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Euclidean time projection 



We can write exponentials of the interaction using a Gaussian 
integral identity 

We remove the interaction between nucleons and replace it 
with the interactions of each nucleon with a background field. 
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Auxiliary field method 
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We show the exact equivalence between the lattice path integrals and 
transfer matrix operators. 

For simplicity we discuss the example of two-component fermions on 
the lattice with contact interactions  

11 

We discuss the case of fermionic particles, however the case for 
bosonic particles is also handled by giving the fermions fictitious 
labels to make them distinguishable and then symmetrizing over the 
fictitious labels. 

Exact equivalence of lattice formulations 



Let us consider anticommuting Grassmann fields for two-component 
fermions on a spacetime lattice 

The Grassmann fields are periodic in the spatial directions 

Grassmann path integral 

The path integral formulation is perhaps the most general framework 
for quantum fields. This is the formalism which extends rigorously to 
gauge fields.  Convenient for the simple derivation of exact 
conservation laws, Noether currents, and Feynman diagram rules. 
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and antiperiodic in the temporal direction 

Why antiperiodic?  The answer to this question is left as an exercise.  We 
use the standard definition for the Grassmann integration 

(no sum on i) 

We note the equivalence of integration and differentiation with respect 
to a Grassmann variable 
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We use the following shorthand notation for the full integration measure over  
all Grassmann variables 

Define the local Grassmann spin densities 

and the total Grassmann density 

Define the lattice kinetic energy “hopping” coefficients 
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We can take different order of lattice improvement for the kinetic energy     

In our simulations of nucleons, we typically use fourth-order improvement 
for the kinetic energy, but for illustrative simplicity we continue the 
discussion with the simplest case, 
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These are defined to give a quadratic kinetic energy as function of 
momentum  



We use lattice units where everything is divided or multiplied by powers 
of the spatial lattice spacing to make it dimensionless.  We also define 
the ratio of temporal to spatial lattice spacings 

The free nonrelativistic particle lattice action in its simplest form is 
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We are interested in the path integral of the exponential of the action 
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With a contact interaction between the two components, the lattice 
action is 



Second quantization and the transfer matrix 

Consider now fermion annihilation and creation operators.  For the 
moment we consider just one operator each 

For any function of the annihilation and creation operators 

we note that the quantum-mechanical trace of the normal-ordered  
product satisfies the following identity relating it to a Grassmann integral 

Creutz, Found. Phys. 30 (2000) 487 
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The pedestrian proof consists of testing all four linearly independent 
functions of the annihilation and creation operators 
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Let us rewrite the identity in a fancy form that starts to resemble the 
lattice Grassmann path integral 

This identity can be generalized to any sequential product of normal-ordered 
functions of the annihilation and creation operators. 
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with antiperiodic time boundary conditions 

This identity can be further generalized to the case with many  
Grassmann variables 

D. L., Prog. Part. Nucl. Phys. 92 (2009) 117 

Lähde, Meißner, “Nuclear Lattice Effective Field Theory: An Introduction”, Springer (2019) 



We now define the free nonrelativistic lattice Hamiltonian in its simplest 
form 
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We also define the following density operators 

So now the same Grassmann path integral we had defined before 
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This demonstrates the exact equivalence of the two lattice formulations 
for any spatial and temporal lattice spacings. 

can be rewritten in terms of the quantum-mechanical trace of the 
product of normal-ordered transfer matrices 



We now show the exact equivalence between the Grassmann path integral 
and the Grassmann path integral with auxiliary fields 

24 

Auxiliary fields 



Grassmann path integral with auxiliary fields 

We can rewrite the same lattice Grassmann path integral using an 
auxiliary field  
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We remove the interaction between nucleons and replace it with the 
interactions of each nucleon with a background field. 



This demonstrates the exact equivalence of the following three lattice 
formulations for arbitrary lattice spacings: 
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Transfer matrix operator with auxiliary fields 

We use the equivalence of the Grassmann path integral and normal-
ordered transfer matrix and apply it to the case of the auxiliary-field 
Grassmann path integral.  We find 
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This shows the exact equivalence of the following four lattice formulations for 
arbitrary lattice spacings: 
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Generalization to d dimensions is more challenging.  If we keep the 
same number of grid points, N, then only N1/d points per dimension 
and relative error can be quite large. 

Consider approximating a one-dimensional integral by a simple 
Riemann sum 

The x(j) are at regularly spaced intervals. 
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Introduction to Monte Carlo techniques 



Example:  Volume of 3D sphere using random darts 

Suppose instead we choose the points at random positions in the d-
dimensional space.  Then relative error is purely statistical and can be 
as small as N-1/2. 
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Select N uniformly distributed random points inside the cube.  
Determine the fraction of points inside the sphere.  This gives an 
estimate for the ratio of the sphere volume to cube volume. 
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When calculating thermal averages in statistical mechanics or path 
integrals in Euclidean-time field theory, one computes sums or integrals 
over many degrees of freedom weighted by an exponential Boltzmann 
factor 

Due to the exponential weight, nearly all of the configurations make 
only a very small contribution.  So a simple dartboard random sampling 
is very inefficient. 

32 



This technique is called importance sampling. The thermal average is 
simply an average over representative configurations selected with this 
sampling probability. 
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Importance sampling 

A more efficient  method to calculate the average is to select configurations 
with probability equal to 



We will be discussing Markov chain algorithms, and so it is useful to 
review the elements and theory of Markov chains.  Consider a chain of 
configurations labeled by order of selection.  We call this integer-
valued label the computation step. 

Let us denote the probability of selecting configuration A at 
computation step n as 

Suppose we have selected configuration A at computation step n.  The 
probability that we select configuration B at computation step n + 1 
is denoted 
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Markov chains 



This transition probability is chosen to be independent of n and 
independent of the history of configurations selected prior to selecting 
A at computation step n.  This defines a Markov chain. 

We note that 
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We now define the notion of ergodicity.  Suppose we are at 
configuration A at computation step, n.  Let SA be the set of all 
positive integers m, such that the return probability to A is nonzero 



If the set SA is not empty, then we say that A is positive recurrent.  If 
the greatest common divisor of the set of integers in SA is 1, then we 
say that A is aperiodic.  If all of the configurations connected by the 
Markov chain are recurrent and aperiodic, then the Markov chain is 
said to be ergodic.  If the Markov chain is ergodic and all 
configurations are connected by the graph of nonzero transitions in the 
Markov chain, then there is a unique equilibrium distribution that is 
reached in the limit of large number of computation steps that is 
independent of the initial conditions. 
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Serfozo, “Basics of Applied Stochastic Processes”, (Berlin: Springer-Verlag) 2009 



Detailed balance 

We want the equilibrium probability distribution to be  

One way to do this is to require  

for every pair of configurations A and B.  This condition is called 
detailed balance. 
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If the Markov chain is ergodic and all configurations are connected, 
then after many computation steps we reach the unique equilibrium 
distribution, which satisfies the stationary condition 



for all configurations A. 

Comparing with the detailed balance condition, we conclude that 
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One popular method for generating the desired detailed balance 
condition is the Metropolis algorithm  
 
Metropolis, Teller, Rosenbluth, J. Chem. Phys. 21 (1953) 1087  

Metropolis algorithm 



Usually the transition probability can be divided in terms of a 
proposed move probability and an acceptance probability, 

And quite often the proposed move probability is symmetric 

However this does not need to be the case.  One can design useful 
algorithms where there is some guiding involved in the proposed 
moves.  It is also not necessary that you use only one type of  
update. If you maintain detailed balance for each type of update 
process, then you also recover the target probability distribution. 
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Once your Markov chain is set up properly, you can now compute  
observables such as 

by computing the average  

for large N from your Markov chain. 
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