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Construct the effective potential order by order 

 

Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3 
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Contact interactions	

	
Leading order (LO) Next-to-leading order (NLO) 

Chiral EFT for low-energy nucleons 



Ordonez et al. 1994; Friar & Coon 1994; Kaiser et al. 1997; Epelbaum et al. 1998, 2003, …;  
Kaiser 1999-2001; Higa et al. 2003; … 
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Leading order on the lattice 
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Next-to-leading order on the lattice 



Pion mass difference 
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Charge symmetry breaking 

Charge independence breaking 
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Spherical wall method 

Imagine a massless string connecting two particles.  There is no effect  
on the center-of-mass motion.  However, the two particles cannot separate  
beyond the length of the string. We have imposed a hard spherical wall  
boundary condition on the relative motion. 

This can now be used to extract scattering phase shifts for the two   
interacting particles. 

Borasoy, Epelbaum, Krebs, D.L., Meißner, EPJA 34 (2007) 185 

Lu, Lähde, D.L., Meißner, PLB 760 (2016) 309 

Bovermann, Epelbaum, Krebs, D.L. arXiv:1905.02492 



In particular, it removes the breaking of rotation symmetry caused by the  
periodic boundaries. 

Carlson, Pandharipande, Wiringa, NPA 424 (1984) 47  

The spherical wall method has been used in continuous space calculations. 

But the method is particularly useful for finite-volume lattice calculations.  
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The radial Schrödinger equation gives 

Beyond the range of the interaction, the wave function has the form 
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The wave function vanishes at the wall boundary. Therefore the  
phase shift is  
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For the Coulomb case, the Bessel functions are replaced by Coulomb  
wave functions 

where 
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Cubic symmetry group 
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Free energy levels 
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We can construct an approximate but surprisingly accurate radial 
equation by grouping together lattice coordinates with nearly the 
same magnitude and prescribing the angular dependence according 
to spherical harmonic projections 

For coupled channels in a finite volume, the mismatch of energy 
levels for the different channels is a nuisance.  One can overcome 
this problem by interpolating the scattering data or fitting some 
functional form. 
 

However in the spherical wall approach we can solve this problem 
for the case of two coupled channels by introducing a fictitious 
potential localized near the wall boundary that breaks time 
reversal invariance. 
 



After breaking time reversal symmetry, the wave function and its 
complex conjugate are in general linearly independent.  We can 
solve the coupled system for each energy level without interpolation 
or fitting. 

Lu, Lähde, D.L., Meißner, PLB 760 (2016) 309 
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This has now been extended to an arbitrary number of coupled 
channels.  The trick is that if we have N coupled channels, then we 
should make N identical copies of the system. 

These copies are then coupled to each other through a fictitious  
potential that is localized near the spherical wall boundary.  
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Bovermann, Epelbaum, Krebs, Lee, arXiv:1905.02492, to appear in PRC 
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Chiral effective field theory on the lattice 

We give an overview of chiral effective field theory interactions on the 
lattice.  We define the smeared annhilation and creation operators. 
	

Next we form bilinear functions of the annihilation operators with spin and 
isospin quantum numbers S, Sz, I, Iz.  
	

Li, Elhatisari, Epelbaum, D.L., Lu, Meißner, PRC 98, 044002 (2018)  
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We introduce orbital angular momentum using solid spherical harmonics  
	

that are written as functions of the lattice derivatives on one of the 
annihilation operators 
	

We then project onto the selected spin and orbital angular momentum 
using Clebsch-Gordan coefficients	
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Li, Elhatisari, Epelbaum, D.L., Lu, Meißner, PRC 98, 044002 (2018)  

We use these structures to construct the short-range interactions.  We also 
specifically construct a short-range interaction that is Wigner SU(4) 
symmetric at leading-order with a tunable local regulator. 	

For the long-range interactions, we include the one-pion exchange potential 
and the two-pion exchange potential for smaller lattice spacings.  For coarser 
lattice spacings, the difference between the two-pion exchange potential and 
short-range interactions are not resolved. We also include the Coulomb 
interaction between protons and isospin-breaking interactions. 	

Elhatisari, et al., PRL 119, 222505 (2017); Elhatisari, et al., PRL 117, 132501 (2016)  
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Figure courtesy of Ning Li 
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Li, Elhatisari, Epelbaum, D.L., Lu, Meißner, PRC 98, 044002 (2018)  



We demonstrate that when a control parameter in the Hamiltonian matrix 
is varied smoothly, the extremal eigenvectors do not explore the large 
dimensionality of the linear space.  Instead they trace out trajectories with 
significant displacements in only a small number of linearly-independent 
directions.   

Eigenvector continuation 

We prove this empirical observation using analytic function theory and the 
principles of analytic continuation.  

Since the eigenvector trajectory is a low-dimensional manifold embedded in 
a very large space, we can find the desired eigenvector using methods 
similar to image recognition in machine learning. 

35	

D. Frame, R. He, I. Ipsen, Da. Lee, De. Lee, E. Rrapaj, PRL 121 (2018) 032501 



Consider a one-parameter family of Hamiltonian matrices of the form 

where H0 and H1 are Hermitian.  Let the eigenvalues and eigenvectors be 
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We can perform series expansions around the point c = 0. 

This is the strategy of perturbation theory.  We can compute each term in 
the series when the eigenvalues and eigenvectors of H0 are known or 
computable. 
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Perturbation theory 

convergence	region	
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Bose-Hubbard model 

In order to illuminate our discussion with a concrete example, we consider 
a quantum Hamiltonian known as the Bose-Hubbard model in three 
dimensions.  It describes a system of identical bosons on a three-dimensional 
cubic lattice. 

The parameter t controls the hopping the bosons on the lattice, and U is the 
single-site pairwise interaction.  We set the chemical potential to be 
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Perturbation theory fails at strong attractive coupling 
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Restrict the linear space to the span of three vectors 
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analytic	continuation	



The eigenvector can be well approximated as a linear combination of a 
few vectors, using either the original series expansion 
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or the rearranged multi-series expansion we obtained through analytic 
continuation  

As c is varied the eigenvector does not explore the large dimensionality of 
the linear space, but is instead well approximated by a low-dimension 
manifold. 
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We can “learn” the eigenvector trajectory in one region and perform 
eigenvector continuation to another region 
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The Riemann surfaces of the degenerate eigenvectors are entwined at 
branch point singularities. 
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Applying eigenvector continuation to more than one eigenvector at a time 
accelerates convergence near avoided level crossings. 
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arXiv:1909.08446	
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