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Let us consider a system with A particles.  The idea of projection Monte 
Carlo is to choose a given initial and final state.  Very often they are 
chosen to be the same state.  The initial and final state will sandwich a 
product of a string of transfer matrices.  Pictorially the amplitude looks 
like this: 
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Using auxiliary fields, we have	

where the auxiliary field amplitude is 	

Projection Monte Carlo with auxiliary fields 



We can create a general single-particle state on the lattice with a creation 
operator multiplying a coefficient function f that depends on the spatial 
lattice sites and spin component i. 

To make the discussion concrete, we continue on with our example of 
two-component fermions with zero-range interactions. 

For sufficiently large Lt the amplitude Z(Lt) will be dominated by 
the ground state of our quantum system in the sector which is not 
orthogonal to our initial state. We will see the largest eigenvalue of 
the transfer matrix M, which we use to extract the corresponding 
ground state energy E0  
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For our projection Monte Carlo calculation we take our A-body initial  
state as an operator product 
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For the purposes of coding the projection Monte Carlo calculation, it is 
convenient to view the identical nucleons as carrying a fictitious label 
[j] = [1], …, [A]  that makes all of the particles distinguishable. 

We will sum over all possible assignments of these operator labels 
and the anticommuting algebra of the operators will give the proper 
antisymmetry as required.	



With these hidden labels our A-body initial state is 

where the summations are over all permutations, and sgn is the sign of 
the permutation.  In the last line we get the usual Slater determinant 
wave function. 

With these hidden indices our normal-ordered auxiliary-field transfer 
matrix at time step nt can be written as 
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All other terms coming from higher powers coming from the exponential 
will vanish due to the normal ordering.  This is because we have only 
one particle carrying each fictitious label [j] = [1], …, [A].  

In the projection Monte Carlo calculation we compute the amplitude 

for each configuration of the auxiliary field s.  We note that this A-body  
amplitude is just the determinant of the matrix of single nucleon amplitudes  
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In summary, we want to compute the following ratio for large Lt: 

Since we usually write the observable for our Markov chain in the  
numerator rather than the denominator, we will work with reciprocal  
of this ratio and calculate using auxiliary fields 

where the auxiliary field amplitudes are  
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In order to compute this using a Markov chain process, the updating of the 
auxiliary field is done most efficiently if you store the set of vectors  
for each single-particle initial state at each time step  

as well as the dual vectors at each time step propagating in the reverse  
temporal direction 



So now if we need to compute the update to an auxiliary field value at  
time step nt, we have an easy way to compute the change in the amplitude 

change here 
and re-evaluate	
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π
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Lattice chiral EFT at leading order 



We first consider the leading order chiral EFT interaction on the lattice in 
the Grassmann path integral formalism  

It is convenient to view c without indices as a column vector and c* 
without indices as a row vector 
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The first interaction we consider is the short-range interaction between 
nucleons which is independent of spin and isospin 

Using the auxiliary field s, we can write this interaction as 

where 

13	



Next we have the short-range interaction dependent on isospin 

where we are using the Pauli matrices in isospin space  

In terms of three auxiliary fields sI, we can write the interaction as  
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The remaining interaction is the one pion exchange potential (OPEP).  
We will not include time derivatives in the free pion action, and hence the 
the pion is not treated as a dynamical field.  Instead it resembles an 
auxiliary field that produces an exchange potential for the nucleons.   
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where gA is the axial charge, fπ is the pion decay constant, and we have 
used the Pauli spin matrices  

The pion coupling to the nucleon is 

And the gradient of the pion field is 
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We can reexpress everything in terms of normal-ordered transfer matrix 
operators   

where 

with 
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For the auxiliary-field projection Monte Carlo calculation we compute 

where  

and the matrix of single nucleon amplitudes is 
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We store the set of vectors for each single-particle initial state at each 
time step  

as well as the dual vectors at each time step propagating in the reverse  
temporal direction 
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These are useful in computing the update to an auxiliary field value at 
time step nt, using the following relations: 



It is convenient to redefine the normalization of πI 

So that 

with 

and 
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Theorem:  Any fermionic theory with SU(2N) symmetry and two-body 

potential energy that has a negative semi-definite Fourier transform 

obeys SU(2N) convexity bounds. 

Corollary:  The system can be simulated without sign oscillations 

Chen, D.L. Schäfer, PRL 93 (2004) 242302; 
D.L., PRL 98 (2007) 182501 
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There are 2N species of fermions.  Let the interaction have the form 

Where ρ is total density of particles summed over all 2N species.  The 

transfer matrix is  

in our auxiliary field transfer matrix.  More details on the next slide.   

We will couple an auxiliary field s to the total density 



The amplitude we want to calculate is 

where V -1  is the inverse of the potential.  The normalization of Ds is  

chosen to make this identity hold. 

Using the auxiliary field formalism we can also write as 
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We choose an initial state where there are K + 1 particles for the first 

j species and K particles for the remaining 2N - j species.  

 

    Species 1:   1, 2, 3 … K, K + 1 

    Species 2:   1, 2, 3 … K, K + 1 

         

    Species j:   1, 2, 3 … K, K + 1 

    Species j + 1:  1, 2, 3 … K       

          

    Species 2N - 1:  1, 2, 3 … K 

    Species 2N:   1, 2, 3 … K      
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Then the matrix  

has the following block diagonal structure: 
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The path integral over auxiliary fields is then 
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Let n1 and n2 be integers such that 0 ≤ 2n1 ≤ j ≤ 2n2  ≤ 2N.  Let us 

define a new positive-definite integral measure 

Then the amplitude can be rewritten as 



The Hölder inequality states that for any positive p, q satisfying 

we must have 
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We now apply the Hölder inequality with  



This is an inequality for the path integrals of systems with different 

numbers of particles.  This can be written as 

We now take the limit of large Euclidean time.  This gives us convexity 
bounds for the ground state energies of the systems with different 
numbers of particles. 
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D.L., PRL 98 (2007) 182501 
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For similar convexity bounds applied to entanglement entropy bounds: 

Drut, Porter, PRL 114, 050402 (2015) 



A tale of two interactions 
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Two LO interactions, A and B, have nearly identical nucleon-nucleon phase 
shifts and well as three- and four-nucleon bound states	

Elhatisari, Li, Rokash, Alarcon, Du, Klein, Lu, Meißner, Epelbaum, Krebs, Lähde, D.L., Rupak, 
PRL 117, 132501 (2016) 
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Bose condensate of alpha particles! 
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Alpha-alpha interaction not uniquely determined by low-energy few-body data	
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Control parameters: Sensitivity to interaction range and locality 

Elhatisari, Li, Rokash, Alarcon, Du, Klein, Lu, Meißner, Epelbaum, Krebs, Lähde, D.L., Rupak, 
PRL 117, 132501 (2016) 
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Effective forces between bound states 

Numerical tweezers are used to probe the relation 
between particle-particle interactions and  

the induced interaction between bound states 

Rokash, Epelbaum, Krebs, D.L., Rupak, Phys. Rev. Lett. 118, 232502 (2017)  



Dependence on tweezer trapping strength 
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Control parameters: Sensitivity to interaction range and locality 

Dimer-dimer effective potential 

Rokash, Epelbaum, Krebs, D.L., Rupak, Phys. Rev. Lett. 118, 232502 (2017)  
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Rokash, Epelbaum, Krebs, D.L., Rupak, Phys. Rev. Lett. 118, 232502 (2017)  



Pinhole Algorithm 

Consider the density operator for nucleon with spin i and isospin j 

We construct the normal-ordered A-body density operator 

In the simulations we do Monte Carlo sampling of the amplitude 
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i1,j1 

i2,j2 

i3,j3 

i4,j4 
i5,j5 

i6,j6 

i7,j7 

i9,j9 i10,j10 

i11,j11 

i15,j15 

Monte Carlo updates of pinholes 

Monte Carlo  
updates of auxiliary/pion fields 

i13,j13 

i12,j12 

i14,j14 

i16,j16 

i8,j8 

Elhatisari, Epelbaum, Krebs, Lähde, D.L., Li, Lu, Meißner, Rupak, PRL 119, 222505 (2017) 
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Oxygen-16 
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lattice spacing = 1.32 fm 

Animation by Gabriel Given 
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Model-independent measure of clustering 
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Elhatisari, Epelbaum, Krebs, Lähde, D.L., Li, Lu, Meißner, Rupak, PRL 119, 222505 (2017) 
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Model-independent measure of alpha cluster geometry   

For the carbon isotopes, we can map out the alpha cluster geometry 
by computing the density correlations of the three spin-up protons.  
We compute these density correlations using the pinhole algorithm. 
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Elhatisari, Epelbaum, Krebs, Lähde, D.L., Li, Lu, Meißner, Rupak, PRL 119, 222505 (2017) 
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For an overview of microscopic clustering in light nuclei see the review 

Freer, Horiuchi, Kanada-En’yo, D.L., Meißner, RMP 90, 035004 (2018) 
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